

Hodnotenie vplyvov činností, resp. výrobkov na životné prostredie

Časť 1 Gabi Software

(Dagmar Samešová, Jozef Mitterpach, Juraj Poništ)

(manuál, pracovná verzia, 2018)

Obsah

Úvod	
1. Bila	ncie, toky, plány a procesy
1.1.	Vytvorenie projektu pre uľahčenie práce s tokmi, plánmi a procesmi5
1.2.	Toky 6
1.3.	Plány
1.4.	Procesy
2. Vkl	adanie vstupných tokov 11
2.1.	Vstupy a výstupy
2.2.	Vkladanie tokov 12
3. Vyt	váranie nových tokov
3.1.	Pridávanie množstva k tokom16
3.2.	Zadanie množstiev toku17
4. Vyt	váranie nových procesov 19
4.1.	Typy procesov
4.1.	1. u-so
4.1.	2. u-bb
4.1.	3. a-gg
4.1.	4. p-agg
4.1.	5. aps
4.2.	Určenie typu procesu

Úvod

Pri posudzovaní životného cyklu metódou (LCA) vzhľadom na veľké množstvo spracovávaných údajov sa vyvinuli a neustále vyvíjajú špecializované databázové nástroje. Mnohé súkromné spoločnosti a štátne organizácie, ktoré pracujú na rozvoji metódy LCA, sa podieľajú aj na tvorbe databáz a rozvoji aplikačných softvérov. Medzi najznámejšie softvérové nástroje pre spracovanie LCA patria: GaBi (Pe International, Nemecko), CMLCA (Leiden University, Holandsko), SimaPro (Pré Consultants, Holandsko), Umberto (ifu Hamburg, Nemecko), Boustead Model (Boustead Consulting, Veľká Británia).

GaBi je špecializovaný softvérový balík, ktorý je v súlade o štandardizovanou metodikou radu noriem ISO 14 040. Softvér umožňuje komplexné environmentálne posúdenie, je tvorený modulárnym systémom, softvér a databáza sú na sebe nezávislé, umožňuje sa dopĺňanie a inovácia. Nasledujúce kapitoly sú spracované na základe podkladov spoločnosti PE INTERNATIONAL, Hauptstraße 111-115, 70771 Leinfelden-Echterdingen, Germany ako súčasť manuálu.

1. Bilancie, toky, plány a procesy

Základom každej Gabi databázy sú bilancie, plány, procesy a toky. GaBi počíta potenciálne vplyvy na životné prostredie pomocou plánov. Plány reprezentujú systém s jeho hranicami. Študovaný systém pozostáva z procesov, predstavujúcich skutočné procesy, ktoré prebiehajú. Toky predstavujú všetky materiálové a energetické toky prechádzajúce medzi procesmi rovnako ako toky do a zo systému. Z bilancie vyplývajú rôzne zoznamy vstupných a výstupných tokov zahrnutých do procesov.

Teraz sa pozrieme na model, ktorý bol vytvorený pri príprave tohto manuálu. Vyberieme si kartu **"Plans"** a následne dvojklikom zvolíme **"Tutorial Model"** plán.

Po tomto výbere sa nám zobrazí nasledujúce okno, ktoré, ako vidíme, pozostáva zo série procesov, prepojených tokmi.

Môžeme zatvoriť tento model.

Toky, vchádzajúce do systému produktu z prírodného systému (životného prostredia, napr. zdroje ako čierne uhlie), poprípade tie, ktoré systém opúšťajú (napr. emisie CO₂) sú označované ako elementárne toky. Ak vytvoríme zoznam všetkých vstupných a výstupných elementárnych tokov spojených so systémov, vytvorili sme LCI (life cycle impact).

1.1. Vytvorenie projektu pre ul'ahčenie práce s tokmi, plánmi a procesmi

Po aktivácii projektu sa v rámci tohto projektu uložia všetky novovytvorené procesy, plány a toky. To umožňuje oveľa jednoduchšie nájsť všetky relevantné informácie pri otvorení projektu v budúcnosti. Je dobrým nápadom pracovať s projektmi pre zachovanie organizácie LCA.

Ideme vytvoriť model s názvom "Life Cycle Steel Paper Clip".

Klikneme na kartu **"Projects"** a začneme s vytváraním nového projektu kliknutím pravým tlačidlom myši na oblasť napravo a vyberieme **"New"**.

Názov projektu je "Life Cycle Steel Paper Clip".

Klikneme na možnosť "Activate project".

🔀 Life Cycle Steel Paper Clip [Projects] DB Projects			
Object Edit View Help			
Project administration			
Name			
Life Cycle Steel Paper Clip		Deactivate proje	ect 🙀 active
ISO documentation Object list			2
Nation Name	Type / Sh 🗎 Source	Object group	Last change
la l			

Následne môžeme zatvoriť projektové okno.

1.2. Toky

Toky predstavujú pravdepodobne najdôležitejšiu informáciu celého GaBi softvéru.

Toky sú charakterizované množstvom, energiou a nákladmi s ich príslušnými hodnotami. GaBi obsahuje toky informácií pre rozličné materiály, plasty, kovy, emisie do ovzdušia či vodného prostredia.

Je dôležité pochopiť, že toky obsahujú informácie, ktoré informujú GaBi, do akej miery jedna jednotka tohto toku prispieva k rôznym kategóriám environmentálnych dopadov: tieto sa nazývajú faktory klasifikácie a charakterizácie.

Teraz si uvedieme príklad vyhľadania zemného plynu v rámci tokov GaBi softvéru.

Toky nájdeme na karte "Flows".

Následne klikneme na **"Resources"** z kategórie tokov, odkiaľ pokračujeme k **"Energy resources"** a potom vyberieme ponuku **"Non renewable energy resources"**.

Následne vyberieme zložku "Natural gas".

Teraz môžeme vidieť všetky toky zemného plynu, ktoré sú k dispozícii v databáze. Existuje niekoľko krajín špecifických pre zemný plyn, pretože plynová zmes a jej vlastnosti sa líšia v závislosti od regiónu.

Fakulta ekológie a environmentalistiky, Katedra environmentálneho inžinierstva

Následne si otvoríme daný tok dvojitým kliknutím.

Zobrazí sa dialógové okno toku. V tomto okne môžeme vidieť, že tok je automaticky definovaný ako vstupný alebo výstupný tok, alebo typ toku nie je definovaný, čiže môže byť obomi. Táto kategorizácia sa vykonáva automaticky podľa umiestnenia toku v rámci databázy GaBi.

Referenčné množstvo toku je normálne hmotnosť; to znamená, že referenčná jednotka toku je kilogram. Množstvá možno považovať za vlastnosti toku. Ďalšie množstvo by mohlo byť počet kusov, dĺžka, bjem a tak ďalej.

V zozname množstiev môžeme vidieť, ktoré množstvá sú spojené s týmto tokom. Ak chceme, môžeme pridať ďalšie množstvá. GaBi chráni preddefinované objekty, aby zabránili rušeniu týchto informácií.

Fakulta ekológie a environmentalistiky, Katedra environmentálneho inžinierstva

Name Inputs Reference quantity Mass Flow type Inputs Quantities Inputs Inputs Inputs Quantity Mass Reference quantity Inputs Inputs Quantities Inputs Inputs Inputs Inputs Quantity Inputs Inputs Inputs Inputs EIP97, N	Object Edit View Help					
Name Natural gas Egypt Reference quantity Mass Flow type Inputs Quantities LCC Documentation Quantity Vari 1 kg = * Unit Standar 1 [Quantity] Quantities LCC Documentation Quantities CCC Documentation Quantity / vari 1 kg = * Unit Standar 1 [Quantity] Quantities CCC Documentation Documentation Quantity / vari 1 kg = * Unit Standar 1 [Quantity] Quantities / vari 1 kg = * Unit Standar 1 [Quantity] Quantities / vari 1 kg = * Unit Standar 1 [Quantity] Quantities / vari 1 kg = * Unit Standar 1 [Quantity] Quantities / vari 1 kg = * Unit Standar 1 [Quantity] Quantities / vari 1 kg = * Unit Standar 1 [Quantity] Quantities / vari 1 kg = * Unit Standar 1 [Quantity] Quantities / vari 1 kg = * Unit Standar 1 [Quantity]	🗅 📕 差 🗋 🍘 🌘 🗿 🥐					
Reference quantity Mass Flow type Inputs Inputs Quantities LCC Documentation Quantity / vari 1 kg =* Unit Standar 1 [Quantity] CML2001 - Dec. 07, Abiotic Depletion (ADP) 0.0211 kg Sb-Ec 0 % 47.4 CML2001 - Nov. 09, Abiotic Depletion (ADP fossi 43.8 MJ 0 % 0.0228 CML2001, Abiotic Depletion (ADP) 0.0211 kg Sb-Ec 0 % 47.4 EDIP 1997, Natural gas 1 kg 0 % 0.0228 EISP, EA, Resources, Fossil fuels 3.9 MJ surpl 0 % 0.256 Energy (gross calorific value) 43.8 MJ 0 % 0.0228 Diotic Depletion (ADP) 43.8 MJ 0 % 0.0216 Energy (gross calorific value) 48.6 MJ 0 % 0.0228 Energy (net calorific value) 43.8 MJ 0 % 0.0228 Primary energy demand from ren. and non ren. 1 48.6 MJ 0 % 0.0228 Primary energy from resources (gross cal. value) 43.8 MJ 0 % 0.0228 Primary energy from resources (gross cal. value)<	Name Natural gas Egypt					
Quantities LCC Documentation Quantity / vari 1 kg = * Unit Standar 1 [Quantity] CML2001 - Dec. 07, Abiotic Depletion (ADP) 0.0211 kg Sb-Ec 0 % 47.4 CML2001 - Nov. 09, Abiotic Depletion (ADP fossi 43.8 MJ 0 % 0.0228 CML2001 - Nov. 2010, Abiotic Depletion (ADP fo 43.8 MJ 0 % 0.0228 CML2001, Abiotic Depletion (ADP) 0.0211 kg Sb-Ec 0 % 47.4 EDIP 1997, Natural gas 1 kg 0 % 1 EI99, EA, Resources, Fossil fuels 3.9 MJ surpl 0 % 0.256 EI99, HA, Resources, Fossil fuels 6.58 MJ surpl 0 % 0.152 Energy (gross calorific value) 48.6 MJ 0 % 0.0228 MI02+ v2.1 - Non-renewable energy - Midpoint 40.3 MJ 0 % 0.0228 Primary energy demand from ren. and non ren. 1 48.6 MJ 0 % 0.0228 Primary energy from resources (gross cal. value) 43.8 MJ 0 % 0.0228 Primary energy from resources (net cal. value)	Reference quantity Amass	Elo	w type	Input	S	
Quantity / vari 1 kg = * Unit Standar 1 [Quantity]	& Quantities bccc					
CML 2001 - Dec. 07, Abiotic Depletion (ADP) 0.0211 kg Sb-Ec 0 % 47.4 CML 2001 - Nov. 09, Abiotic Depletion (ADP fossi 43.8 MJ 0 % 0.0228 CML 2001 - Nov. 2010, Abiotic Depletion (ADP fossi 43.8 MJ 0 % 0.0228 CML 2001, Abiotic Depletion (ADP) 0.0211 kg Sb-Ec 0 % 47.4 EDIP 1997, Natural gas 1 kg 0 % 1 EI99, EA, Resources, Fossil fuels 3.9 MJ surpl 0 % 0.256 E199, HA, Resources, Fossil fuels 6.58 MJ surpl 0 % 0.152 Energy (gross calorific value) 48.6 MJ 0 % 0.0228 IO2+ v2.1 - Non-renewable energy - Midpoint 40.3 MJ 0 % 0.0228 Primary energy demand from ren. and non ren. I 48.6 MJ 0 % 0.0228 Primary energy from resources (gross cal. value) 43.8 MJ 0 % 0.0228 Primary energy from resources (net cal. value) 43.8 MJ 0 % 0.0228 Primary energy from resources (net cal. value) 43.8 MJ 0 % 0.0228 Primary energy from resources (net cal. value) <	Quantity /	vari 1 kg = *	Unit	Standa	r 1 [Quantity]	
A CML 2001 - Nov. 09, Abiotic Depletion (ADP fossi 43.8 MJ 0 % 0.0228 CML 2001 - Nov. 2010, Abiotic Depletion (ADP fo 43.8 MJ 0 % 0.0228 CML 2001, Abiotic Depletion (ADP) 0.0211 kg Sb-Ec 0 % 47.4 EDIP 1997, Natural gas 1 kg 0 % 1 EI99, EA, Resources, Fossil fuels 3.9 MJ surpl 0 % 0.226 EI99, HA, Resources, Fossil fuels 6.58 MJ surpl 0 % 0.152 Energy (gross calorific value) 48.6 MJ 0 % 0.0228 I02+ v2.1 - Non-renewable energy - Midpoint 40.3 MJ 0 % 0.0206 Primary energy demand from ren. and non ren. 1 48.6 MJ 0 % 0.0228 Primary energy from resources (gross cal. value) 43.8 MJ 0 % 0.0228 Primary energy from resources (net cal. value) 43.8 MJ 0 % 0.0228 Primary energy from resources (net cal. value) 43.8 MJ 0 % 0.0228 Primary energy from resources (net cal. value) 43.8 MJ 0 % 0.0228 Primary energy from resources (net cal. value) </td <td>A CML2001 - Dec. 07, Abiotic Depletion (ADP)</td> <td>0.0211</td> <td>kg Sb-l</td> <td>Ec 0 %</td> <td>47.4</td> <td></td>	A CML2001 - Dec. 07, Abiotic Depletion (ADP)	0.0211	kg Sb-l	Ec 0 %	47.4	
CML2001 - Nov. 2010, Abiotic Depletion (ADP fo 43.8 MJ 0 % 0.0228 CML2001, Abiotic Depletion (ADP) 0.0211 kg Sb-Er 0 % 47.4 EDIP 1997, Natural gas 1 kg 0 % 1 EI99, EA, Resources, Fossil fuels 3.9 MJ surpl 0 % 0.256 E199, HA, Resources, Fossil fuels 6.58 MJ surpl 0 % 0.152 Energy (gross calorific value) 48.6 MJ 0 % 0.0228 Energy (net calorific value) 43.8 MJ 0 % 0.0228 IO2+ v2.1 - Non-renewable energy - Midpoint 40.3 MJ 0 % 0.0228 Primary energy demand from ren. and non ren. 1 48.6 MJ 0 % 0.0228 Primary energy from resources (gross cal. value) 43.8 MJ 0 % 0.0228 Primary energy from resources (net cal. value) 43.8 MJ 0 % 0.0228 Primary energy from resources (net cal. value) 43.8 MJ 0 % 0.0228 Primary energy from resources (net cal. value) 43.8 MJ 0 % 0.0228 ReCIPe Endpoint (H) - Fossil depletion 1.16 <t< td=""><td>A CML2001 - Nov. 09, Abiotic Depletion (ADP fossi</td><td>43.8</td><td>MJ</td><td>0 %</td><td>0.0228</td><td></td></t<>	A CML2001 - Nov. 09, Abiotic Depletion (ADP fossi	43.8	MJ	0 %	0.0228	
CML 2001, Abiotic Depletion (ADP) 0.0211 kg Sb-Et 0 % 47.4 EDIP 1997, Natural gas 1 kg 0 % 1 E199, EA, Resources, Fossil fuels 3.9 MJ surpl 0 % 0.256 E199, HA, Resources, Fossil fuels 6.58 MJ surpl 0 % 0.152 Energy (gross calorific value) 48.6 MJ 0 % 0.0206 Energy (net calorific value) 43.8 MJ 0 % 0.0228 IO2+ v2.1 - Non-renewable energy - Midpoint 40.3 MJ 0 % 0.0206 Primary energy demand from ren. and non ren. 1 48.6 MJ 0 % 0.0208 Primary energy demand from ren. and non ren. 1 48.6 MJ 0 % 0.0228 Primary energy from resources (gross cal. value) 48.6 MJ 0 % 0.0228 Primary energy from resources (net cal. value) 43.8 MJ 0 % 0.0228 ReciPe Endpoint (H) - Fossil depletion 18.6 0 % 0.0538 ReciPe Midpoint (H) - Fossil depletion 1.16 kg oil eq 0 % 0.864 Standard volume 1.25 Nm3 0 % 0.802 UBP, Ecological scarcity method 43.8 UBP 0 % 0.0228 <td>& CML2001 - Nov. 2010, Abiotic Depletion (ADP fo</td> <td>43.8</td> <td>MJ</td> <td>0 %</td> <td>0.0228</td> <td></td>	& CML2001 - Nov. 2010, Abiotic Depletion (ADP fo	43.8	MJ	0 %	0.0228	
	A CML 2001, Abiotic Depletion (ADP)	0.0211	kg Sb-l	Ec 0 %	47.4	
	🝰 EDIP 1997, Natural gas	1	kg	0%	1	
E199, HA, Resources, Fossil fuels 6.58 MJ surpl 0 % 0.152 Energy (gross calorific value) 48.6 MJ 0 % 0.0206 Energy (net calorific value) 43.8 MJ 0 % 0.0228 IO2+ v2.1 - Non-renewable energy - Midpoint 40.3 MJ 0 % 0.0248 Primary energy demand from ren. and non ren. 1 48.6 MJ 0 % 0.0206 Primary energy demand from ren. and non ren. 1 43.8 MJ 0 % 0.0206 Primary energy from resources (gross cal. value) 48.6 MJ 0 % 0.0206 Primary energy from resources (net cal. value) 43.8 MJ 0 % 0.0206 Primary energy from resources (net cal. value) 43.8 MJ 0 % 0.0206 Primary energy from resources (net cal. value) 43.8 MJ 0 % 0.0228 ReCIPE Endpoint (H) - Fossil depletion 18.6 \$ 0 % 0.0538 ReCIPe Midpoint (H) - Fossil depletion 1.16 kg oil eq 0 % 0.802 UBP, Ecological scarcity method 43.8 UBP 0 % 0.0228 UBP, Ecological scarcity method </td <td>🚴 EI99, EA, Resources, Fossil fuels</td> <td>3.9</td> <td>MJ sur</td> <td>pl 0 %</td> <td>0.256</td> <td></td>	🚴 EI99, EA, Resources, Fossil fuels	3.9	MJ sur	pl 0 %	0.256	
	🚴 EI99, HA, Resources, Fossil fuels	6.58	MJ sur	pl0 %	0.152	
Amount of the energy (net calorific value) 43.8 MJ 0 % 0.0228 ID2+ v2.1 - Non-renewable energy - Midpoint 40.3 MJ 0 % 0.0248 Primary energy demand from ren. and non ren. i 48.6 MJ 0 % 0.0206 Primary energy demand from ren. and non ren. i 43.8 MJ 0 % 0.0206 Primary energy from resources (gross cal. value) 43.8 MJ 0 % 0.0206 Primary energy from resources (net cal. value) 43.8 MJ 0 % 0.0206 Primary energy from resources (net cal. value) 43.8 MJ 0 % 0.0206 ReCiPe Endpoint (H) - Fossil depletion 18.6 \$ 0 % 0.0228 ReCiPe Midpoint (H) - Fossil depletion 1.16 kg oil eq 0 % 0.864 Standard volume 1.25 Nm3 0 % 0.802 UBP, Ecological scarcity method 43.8 UBP 0 % 0.0228 Quantity USP 0 % 0.0228 0.0228	A Energy (gross calorific value)	48.6	MJ	0%	0.0206	
ID2+ v2.1 - Non-renewable energy - Midpoint 40.3 MJ 0 % 0.0248 Primary energy demand from ren. and non ren. i 48.6 MJ 0 % 0.0206 Primary energy demand from ren. and non ren. i 43.8 MJ 0 % 0.0206 Primary energy demand from ren. and non ren. i 43.8 MJ 0 % 0.0206 Primary energy from resources (gross cal. value) 48.6 MJ 0 % 0.0206 Primary energy from resources (net cal. value) 43.8 MJ 0 % 0.0208 ReCiPe Endpoint (H) - Fossil depletion 18.6 \$ 0 % 0.0538 ReCiPe Midpoint (H) - Fossil depletion 1.16 kg oil eq 0 % 0.864 Standard volume 1.25 Nm3 0 % 0.802 UBP, Ecological scarcity method 43.8 UBP 0 % 0.0228	A Energy (net calorific value)	43.8	MJ	0%	0.0228	
A Primary energy demand from ren. and non ren. i 48.6 MJ 0 % 0.0206 Primary energy demand from ren. and non ren. i 43.8 MJ 0 % 0.0228 Primary energy from resources (gross cal. value) 48.6 MJ 0 % 0.0206 Primary energy from resources (net cal. value) 43.8 MJ 0 % 0.0206 Primary energy from resources (net cal. value) 43.8 MJ 0 % 0.0228 ReCiPe Endpoint (H) - Fossil depletion 18.6 \$ 0 % 0.0538 ReCiPe Midpoint (H) - Fossil depletion 1.16 kg oil eq 0 % 0.864 Standard volume 1.25 Nm3 0 % 0.802 UBP, Ecological scarcity method 43.8 UBP 0 % 0.0228	A I02+v2.1 - Non-renewable energy - Midpoint	40.3	M3	0 %	0.0248	
Primary energy demand from ren. and non ren. i 43.8 MJ 0 % 0.0228 Primary energy from resources (gross cal. value) 48.6 MJ 0 % 0.0206 Primary energy from resources (net cal. value) 43.8 MJ 0 % 0.0228 ReCiPe Endpoint (H) - Fossil depletion 18.6 \$ 0 % 0.0538 ReCiPe Midpoint (H) - Fossil depletion 1.16 kg oil eq 0 % 0.864 Standard volume 1.25 Nm3 0 % 0.802 UBP, Ecological scarcity method 43.8 UBP 0 % 0.0228	A Primary energy demand from ren. and non ren. 1	48.6	MJ	0 %	0.0206	
A Primary energy from resources (gross cal. value) 48.6 MJ 0 % 0.0206 Primary energy from resources (net cal. value) 43.8 MJ 0 % 0.0228 ReCIPE Endpoint (H) - Fossil depletion 18.6 \$ 0 % 0.0538 ReCIPE Midpoint (H) - Fossil depletion 1.16 kg oil eq 0 % 0.864 Standard volume 1.25 Nm3 0 % 0.802 UBP, Ecological scarcity method 43.8 UBP 0 % 0.0228	A Primary energy demand from ren. and non ren. 1	43.8	MJ	0 %	0.0228	
A Primary energy from resources (net cal. value) 43.8 MJ 0 % 0.0228 ReCiPe Endpoint (H) - Fossil depletion 18.6 \$ 0 % 0.0538 ReCiPe Midpoint (H) - Fossil depletion 1.16 kg oil eq 0 % 0.864 Standard volume 1.25 Nm3 0 % 0.802 UBP, Ecological scarcity method 43.8 UBP 0 % 0.0228	A Primary energy from resources (gross cal. value)	48.6	M)	0 %	0.0206	
A ReCiPe Endpoint (H) - Fossil depletion 18.6 \$ 0 % 0.0538 A ReCiPe Midpoint (H) - Fossil depletion 1.16 kg oil eq 0 % 0.864 A Standard volume 1.25 Nm3 0 % 0.802 UBP, Ecological scarcity method 43.8 UBP 0 % 0.0228	A Primary energy from resources (net cal. value)	43.8	MJ	0 %	0.0228	
A ReCiPe Midpoint (H) - Fossil depletion 1.16 kg oil eq 0 % 0.864 A Standard volume 1.25 Nm3 0 % 0.802 UBP, Ecological scarcity method 43.8 UBP 0 % 0.0228 Quantity	A ReCiPe Endpoint (H) - Fossil depletion	18.6	\$	0 %	0.0538	
As Standard volume 1.25 Nm3 0 % 0.802 As UBP, Ecological scarcity method 43.8 UBP 0 % 0.0228 Quantity Output	A ReCiPe Midpoint (H) - Fossil depletion	1.16	kg oil e	eq 0 %	0.864	
UBP, Ecological scarcity method 43.8 UBP 0 % 0.0228 Quantity	A Standard volume	1.25	Nm3	0 %	0.802	
Quantity	🙈 UBP, Ecological scarcity method	43.8	UBP	0 %	0.0228	
	Quantity					

Taktiež si môžeme všimnúť kartu LCC.

LCC znamená životnosť cyklu a vzťahuje sa na finančné informácie týkajúce sa životného cyklu skúmaného systému. Na karte LCC sa môže pre tok definovať napríklad cena.

1.3. Plány

K vytvoreniu nového plánu klikneme na kartu **"Plans"**, a potom klikneme pravým tlačidlom myši na oblasť napravo a vyberieme **"New"**.

Nový plán sa nám otvorí v novom okne.

Vložíme názov plánu "Life Cycle Steel Paper Clip" a stlačíme enter.

New [Plans] DB Plan			
Object Edit View Help			
🗋 🔚 🚣 📑 🏹 100% 🗸 (p) 🗲 Eol 📭 🔞 📣	🔿 🥐		
Life Cycle Steel Paper Clip GaBi process plan: Mass [kg] The names of the basic processes are shown.	Selection: New	۲	* III

Je dobrý nápad náš plán priebežne ukladať.

Náš plán uložíme kliknutím na "Save" alebo klikneme na "Object" a potom zvolíme "Save".

1.4. Procesy

Teraz môžeme k naším plánom pridávať procesy a toky. Databáza GaBi obsahuje preddefinované procesy a toky, ktoré môžeme jednoducho priradzovať k modelom.

Pre pridanie procesov je nevyhnutné vedieť, kde ich v GaBi môžeme nájsť.

Existujú 2 spôsoby, ako to urobiť:

- výber procesov z preddefinovaných procesov z hierarchie
- použitie GaBi vyhľadávacej funkcie

Klikneme na ikonu **"Search"** a vložíme názov procesu, ktorý hľadáme. Vložíme napríklad proces **"Steel wire"**.

Vyberieme typ objektu, pre ktorý chceme zadať vyhľadávanie ("Process") a zadáme "Search".

Po vyhľadaní pretiahneme vybraný proces do nášho plánu.

2. Vkladanie vstupných tokov

2.1. Vstupy a výstupy

V ponuke máme dve oblasti zobrazenia nazývané vstupy a výstupy. Vo vstupnom poli je možné zadávať všetky toky, ktoré vstupujú do procesu. Tieto vstupy môžu zahŕňať rôzne formy energie, ako je stlačený vzduch, elektrická energia alebo tepelná energia, ako aj materiály alebo iné spotrebné materiály ako sú mazivá.

Na strane výstupu sa zadávajú všetky toky, ktoré opúšťajú proces. Môžeme napríklad zadať produkty a vedľajšie produkty, ktoré sa vyrábajú, a tiež odpady a emisie vyplývajúce z procesu.

Fakulta ekológie a environmentalistiky, Katedra environmentálneho inžinierstva

💍 New < u-so	> [Part production] DB F	rocess							x
Object Edit	View Help								
	2 D G = =		3	\$ ⅔	🖌 🗖	?			
Name	Natior 🔻 Paper Clip Bendi	פר			Source	- I	u-so - Unit process, s	ingle operat 💌	2
Parameter									•
Parameter	Formula		i Va	ue	Minimum Ma	ximur Standar Comme	er		
Parameter									
🖗 LCA 🖞	VF 🛼 LCC: 0 EUR 🐕	LCWE Docum	entation						
Completeness	No statement	-							
Inputs									•
Flow		Quantity	Amount	Unit	Tra Standar	Origin	Comment		
Flow									
٠									Þ
Outputs									•
Flow		Quantity	Amount	Unit	Tre Standar	Origin	Conment		
Flow									
٠									- P-
System: Chang	ed.	Last change: Syst	em, 2/6/20	13 3:04	k55 PM	GUID: {8fc2e8	34f-84f9-4ea6-903	a-f45c31f080.	•

2.2. Vkladanie tokov

Začnime zadaním vstupného toku.

Klikneme na pole "Flow", zadáme "Steel wire" a stlačíme enter.

🎼 New < u-so	> [Part production] DB	Process							x
Object Edit	View Help								
	2 D D = =		l 🗇 -	\$	1 🗸 🗄	?			
Name	Nation 🔻 Paper Clip Bend	ng			Source	-	u-so - Unit process, s	ingle operati 💌	2
Parameter									•
Parameter	Formula		⊖ Va	alue	Minimum Ma	aximur Standar Comm	ner		
Parameter									
🖗 LCA 🍈	VF 🕌 LCC: 0 EUR 🛸	LCWE Docu	mentation						
Completeness	No statement	-							
									-
Inputs									
Flow		Quantity	Amount	Unit	Tra Standar	Origin	Comment		
Flow steel wire		Quantity	Amount	Unit	TraStandar	Origin	Comment		
Flow steel wre		Quantity	Amount	Unit	Tra Standar	Origin	Comment		
Flow steel wre		Quantity	Amount	Unit	Tra Standar	Origin	Comment		

Pri písaní si môžeme všimnúť, že GaBi sa pokúša predpovedať tok, ktorý hľadáme.

Vznik LCA manuálu, bol podporený projektom KEGA 018TU Z-4/2017, Zvyšovanie znalostnej úrovne študentov v oblasti aplikácií metódy hodnotenia životného cyklu.

Ak sa nájde niekoľko zhôd vo vyhľadávaní, objaví sa okno vyhľadávania a zobrazia sa všetky toky obsahujúce zadané slovo. Pozrime sa na to.

Klikneme na pole, kde je napísané "Steel wire", napíšeme slovo "Steel" a stlačíme enter.

🖒 New <u-so> [Part production] DB Process</u-so>											
Object Edit View Help											
	2 D 🗎 🗖		2	0 🕯	1 🗸 🖩 ?						
Name	Natior - Paper Clip Bend	ing			Source	🔻 🛛 u-so - Unit	process, single operat 💌	2			
Parameter								•			
Parameter	Formula		V.	alue	Minimum Maximur Sta	ndar Commer					
Parameter											
🖗 LCA 🐧	VF 🕌 LCC: O EUR 🦄	LCWE Do	ocumentation								
Completeness	No statement	•									
Inputs								•			
Flow		Quantity	Amount	Unit	Tra Standar Origin	Comment					
steel											

Môžeme si všimnúť, že sa objaví vyhľadávacie pole obsahujúce všetky toky obsahujúce slovo "Steel".

R Search		
	Search results	
	Pattern: steel Search for Flow Directory: Flows	
	Nation Name Type / She Source Object group	Last change
	Flows	236 🔶
Complete object name (parts of name)	Atainless Steel Hot Rolled Shee 🛛 🕥 Metals	11/1/2011
Type of object	Arr Steel Rebar (ELCD) 🛛 🕥 Metals	11/1/2011
Flow Search in	Ateel Hot Rolled (Section) (ELC 🛛 🌒 Metals	11/1/2011
Flows When has the object been changed? S	🧈 Steel sheet 1.5mm el. zinc platı 🌍 Metals	11/1/2011
What text is contained?	arr Steel sheet 1.5mm hot dip galv 🛛 🕥 Metals	11/1/2011
Further options	Arr Steel hot rolled 🔇 Metals	11/1/2011
Search	Ateel sheet 1.5mm hot dip galv 🕥 Metals	11/1/2011
	Arr Steel sheet (ECCS low grade) 👋 Metals	11/1/2011
	🧈 Steel sheet (ECCS) 🏾 🍑 Metals	11/1/2011
	Additives (steel production) 🕥 Metals	11/1/2011
S Available GaBi data sets		Accept Close

Keď sa pozrieme na stĺpec Skupiny objektov, uvidíme, že sú uvedené rôzne druhy tokov.

Fakulta ekológie a environmentalistiky, Katedra environmentálneho inžinierstva

Môžeme zoradiť výsledky vyhľadávania podľa ich skupiny objektov kliknutím na hlavičku **''Object group''**.

Kliknutím vyberieme "Steel wire" a zadáme "Accept".

R Search						X
	Search results					
	Pattern: steel Search for Flow Directory: Flows	s				
	Nation Na	ame	Type / Sh 🛍	Source Object grou	p 🛆 Last change	
	🧈 St	eel billet (St)	۷	Metals	11/1/2011	^
Complete object name (parts of name)	🥏 St	eel wire	v	Metals	11/1/2011	
Type of object Flow	🧈 St	eel cold rolled (St)	J ●	Metals	11/1/2011	
Search in Flows	🧈 St	eel sheet 0.75mm alum. plate	۹	Metals	11/1/2011	
When has the object been changed? Image: Contained? What text is contained? Image: Contained?	🧈 St	eel sheet 0.75mm alum. plate	۷	Metals	11/1/2011	
What objects are used?	🧈 St	eel cold rolled (alloyed)	۷	Metals	11/1/2011	
Search	🤿 W	elding wire (steel)	۷	Metals	11/1/2011	
	🥏 St	ainless steel (cold rolled)	۷	Metals	11/1/2011	
	🥏 St	ainless steel cold rolled coil (:	۷	Metals	11/1/2011	
	🥏 St	eel profile	۷	Metals	11/1/2011	
	🧈 St	eel (hot-dip galvanized)	۲	Metals	11/1/2011	-
S <u>Available GaBi data sets</u>					Accept	Close

Tento proces tiež vyžaduje elektrickú energiu na spustenie ohýbacieho stroja.

Klikneme na pole "Flow" a vložíme slovo "Electricity".

Vyžadujeme si elektrickú energiu, aby sme mohli vybrať a prijať tento tok z vyhľadávacieho poľa. Uistíme sa, že sme skontrolovali stĺpec skupiny objektov, aby sme sa presvedčili, že sme vybrali správny typ objektu.

Môžeme dvakrát kliknúť na položku Elektrina a prijať ju ako vstupný tok.

3. Vytváranie nových tokov

Teraz si predvedieme jeden príklad pre vytváranie nových tokov.

Napíšeme "Steel paper clip" a stlačíme enter.

Všimneme si, že sa otvorí nové okno, ktoré oznamuje, že sa nenachádzajú žiadne zhody pre zadaný výraz a GaBi sa nás pýta, či by sme chceli vytvoriť nový objekt.

Klikneme na "Create new project".

•	Question		,
Outputs Flow steel paper clip	No matches found: "steel paper dip". What do you want to do? Create new object	Cancel	nt -

Musíme zadať, kam by sme chceli umiestniť tento nový objekt. Keďže náš produkt je výrobok, ktorý vyrábame, je rozumné umiestniť ho do zložky cenných látok, pod systémami, dielmi a kovovými časťami.

Táto kategorizácia je dôležitá pre výpočty bilancií v GaBi, preto treba dávať pozor pri výbere vhodného miesta pre náš nový tok.

Vyberieme "Valuable substances > Systems > Parts > Metal parts" and klikneme "OK".

Select object		x
Please select an object type.		
▷ ➡ Resources		
▲ ⇒ Valuable substances		
🛛 🗁 Energy carrier		
🛛 🗁 Materials		
🔺 🥏 Systems		
🕨 🧈 Assemblies		=
Aterial systems		
Non-material systems		
Paint-systems		
A Parts		
Metal part		
Parts from renewable materials		
Plastic parts		
▷ 🔿 Ecoinvent		-
ок 🂦	Cancel	

Teraz môžeme editovať názov toku a pridať ďalšie informácie.

Referenčné množstvo nového prietoku sa automaticky nastaví na hmotnosť. To znamená, že štandardná jednotka tohto prietoku sa meria v kg. Ak do tohto prietoku pridáme nové množstvá, musíme zadať aj množstvo zodpovedajúce 1 kg tohto prietoku. Vykonáme to zadaním čísla a jednotky.

Praktický príklad si predvedieme v nasledujúcej kapitole.

3.1. Pridávanie množstva k tokom

Pretože naša funkčná jednotka je jedna sponka na papier (a nie hmotnosť), mali by sme ju uviesť v zozname množstiev.

Nové množstvo do toku pridáme dvojitým kliknutím na prázdne pole "**Quantity** " a zadaním "**Number of pieces** ".

Potom musíme definovať konverzný faktor na hmotnosť.

Do stĺpca "1 [Quantity] = * kg" zadáme hodnotu "0.00035" a stlačíme enter.

Toto určuje hmotnosť jednej sponky na papier. Môžeme si všimnúť, že GaBi automaticky zadá počet kusov.

Klikneme na tlačidlo "Save" a zatvoríme okno.

3.2. Zadanie množstiev toku

Aj keď sme pridali všetky toky, ktoré vstupujú a opúšťajú proces (napr. ohýbania kancelárskych spiniek), naše toky nemajú informácie o tom, koľko z nich sa spotrebuje a koľko produkuje.

Uvedené informácie pridáme kliknutím na stĺpec Suma a zadaním čiastky požadovanej pre daný proces. Kliknutím na položku Jednotka môžete zmeniť tok jednotky. Jednou veľmi užitočnou funkciou GaBi je, že dokáže automaticky konvertovať medzi všetkými danými jednotkami.

Napríklad odhadujme, že na ohnutie kancelárskej spinky potrebujeme 0,0001 kWh elektrickej energie.

Najskôr zvolíme jednotku "kWh" a potom zadáme hodnotu "0,0001".

💦 New <u-so></u-so>	> [Part production] DB	Process							- 0 - X
Object Edit	View Help								
	2 D 🗿 \Xi 🗄		1 🗇 🗸	0 🕅	\checkmark		?		
Name	Natior 👻 Paper Clip Bendi	ing			Sou	irce	▼ u-s	o - Unit process, sir	igle operat 👻 泽
Parameter									•
Parameter	Formula		🛆 Va	lue l	Minimu	m Maximu	r Standar Commer		
Parameter									
🦑 LCA 🐧	VF 强 LCC: 0 EUR 💊		nentation						
Completeness	No statement								
Toresta	no otatement								
Flow		Quantity	Amount	Unit	Te	a Standar	Origin	Comment	
Steel wi	re [Metals]	A Mass	0	kg	x	0 %	(No statement)	Connerte	
📄 🔿 Electrici	ty [Electric power]	🎄 Energy (net ca	0.0001	kWh	💌 X	0 %	(No statement)		
Flow			1	JGJ	*				
				J					
				kJ kom	=				
				kWh 🚽	6				
				MWh 7	V				

Ak zmeníme jednotku späť na hodnotu "**MJ**" uvidíme, že suma 0,0001 kWh sa automaticky prevedie na zodpovedajúcu sumu MJ.

💦 New <u-so> [Pai</u-so>	rt production] DB Proce	tess						. 🗆 💌 X
Object Edit Viev	v Help							
2 - 2	□ 🔚 ≁ 🗈 💼 ☰ ☰ ≡ ◙ 🗇 🗢 💥 🗸 🖩 🤈							
Name Nati	ior. 👻 Paper Clip Bending			So	urce	▼ [u-	so - Unit process, single	operat 🔻 泽
Parameter								-
Parameter Form	nula		🛆 Valu	ie Minimu	um Maximu	r Standar Commer		
Parameter								
Completeness No s	Image: Completeness VF VF LCC: 0 EUR Documentation Completeness No statement Image: Completeness Image: Completeness							
Flow	Oua	antity A	mount I	Unit T	ra Standar	Origin	Comment	
⇒ Steel wire [ŀ	letals] 🗼	Mass 0		kg X	0%	(No statement)	
📄 🥏 Electricity [E	lectric power] 🛛 🎄 🛛	Energy (net ca 0	.00036	из 🂥	0 %	(No statement))	
Flow				6	-			
•								•

Zistili sme, že papierová svorka má hmotnosť približne 0,35 g.

Kliknutím na stĺpec Množstvo na výstupe môžeme zvoliť zadanie množstvá hmotnosti alebo počtu kusov.

Vznik LCA manuálu, bol podporený projektom KEGA 018TU Z-4/2017, Zvyšovanie znalostnej úrovne študentov v oblasti aplikácií metódy hodnotenia životného cyklu.

Zvolíme množstvo "Number of pieces" a zadáme mnostvo "1".

•							•
Outputs							-
Flow	Quantity	Amount	Unit	Tra Standar	Origin	Comment	
Steel Paper Clip [Metal parts]	Å Number of 🗨)1 💥	DCS.	X 0%	(No statement)		
Flow	Mass	Nr.	2				
	Number of pieces	e e					

Ako funkčná jednotka bola zadaná 1 kancelársky spinka. To znamená, že všetky údaje o tomto procese sa teraz budú týkať výroby 1 papierovej spinky. Ak zmeníme množstvo späť na hmotnosť, suma sa prevedie na 0,00035kg.

Na vstupe potrebujeme rovnaké množstvo oceľového drôtu (steel wire).

Zadáme vstupnú hmotnosť "0,00035".

npleteness No statement	-							
inputs								
Flow	Quantity	Amount	Unit	Tra Sta	andar	Origin	Comment	
Steel wire [Metals]	🙈 Mass	0.00035	kg	X 0 9	%	(No statemen	it)	
Electricity [Electric power]	🎄 Energy (net ca	0.00036	CIN	X 0 9	%	(No statemen	it)	
Flow			12					
< Outputs								
< Dutputs Flow	Quantity	Amount	Unit Th	ira Standar	Origin	1	Comment	
< Outputs Flow → Steel Paper Clip [Metal parts]	Quantity	Amount 0.00035	Unit Tra kg X	ira Standar (0 %	Origin (No s	statement)	Comment	

4. Vytváranie nových procesov

Ideme vytvoriť nový proces.

Pravým tlačidlom vyberieme v pláne možnosť "New process".

Otvorí sa okno, kde môžeme definovať, kam chceme nový proces uložiť.

Vyberieme "Production", potom "Part production" a stlačíme "OK".

Fakulta ekológie a environmentalistiky, Katedra environmentálneho inžinierstva

Select object	x
Please select an object type.	
🔺 🖗 Processes	
Auxiliary processes	
Benefication	
Construction industry	
Disposal	
🛛 🖉 Ecoinvent	
Energy conversion	=
🗅 🖑 Industry data	-
Production	
Assembly 4	
Electronics	
Material production	
Part production	
Recovery	
Repairing	
▷ 🔤 Transport	· ·
OK Cancel	

Vložíme názov "Paper Clip Bending" a klikneme "Save".

New <u-so> [Part production] DB Process</u-so>	
Object Edit View Help	
	/ 🖩 🖓
Name Natior - Paper Clip Bending	Source vu-so - Unit process, single operat v
Parameter	

Môžeme začať tým, že vyberieme krajinu, na ktorú sa vzťahuje náš proces. Nemusíme to robiť, ale je užitočné, ak máme tieto informácie.

V zdrojovom poli môžeme vybrať, odkiaľ tieto procesné dáta pochádzajú. Toto pole necháme zatiaľ prázdne. Môžeme tiež vybrať typ procesu.

4.1. Typy procesov

V systéme GaBi existuje 5 typov procesov v súlade so systémom ILCD Európskej únie.

Procesy sú kategorizované, pre lepšie pochopenie ich funkcie v rámci produktového systému.

4.1.1. u-so

Jednotkový proces samostatnej operácie (a unit process single operation), reprezentovaný u-so, sa často označuje ako jednotkový proces alebo od brány po bránu. Tento typ procesu obsahuje iba údaje pre jeden konkrétny krok procesu.

4.1.2. u-bb

A unit process black box, predstavovaná u-bb, sa odkazuje na multifunkčný proces alebo procesný reťazec na úrovni zariadenia. Tento typ procesu môže predstavovať skôr skupinu procesov ako jeden krok procesu.

4.1.3. a-gg

Na druhej strane výsledok LCI obsahuje celé údaje o životnom cykle pre časť alebo pre celý životný cyklus výrobkového systému. Tento druh súboru údajov sa často označuje ako od kolísky po bránu.

4.1.4. p-agg

Čiastočne ukončený systém, reprezentovaný p-agg, obsahuje všetky údaje LCI pre proces s výnimkou jedného alebo viacerých produktov, ktoré vyžadujú ďalšie modelovanie. Napríklad, proces oceľového drôtu je čiastočne ukončený systém, pretože všetky vstupy a emisie pre proces sú účtované s výnimkou typu ocele, ktorá sa používa na výrobu oceľového drôtu. Tento typ procesu sa niekedy označuje ako čiastočne prepojený proces.

4.1.5. aps

Posledný typ procesu sa nazýva systém vyhýbaného produktu a je reprezentovaný aps (an avoided product system). Môže to byť typ mätúceho procesu, pretože všetky vstupné a výstupné toky sú nastavené na záporné hodnoty alebo všetky vstupy sú konvertované na výstupy alebo naopak.

Tento typ súboru údajov ukazuje, ako sa vyhnúť používaniu určitých materiálov a energií v študovanom produkte.

Teraz uvažujme, aký druh procesu pre ohýbanie oceľovej spinky by bolo vhodné nastaviť. Jedná sa o jednotkový proces s jednou operáciou, proces čiernej skrinky jednotky, výsledok LCI, čiastočne ukončený systém alebo aps.

Náš proces spadá pod prvý typ, pretože tento proces predstavuje len proces ohýbania papierovej spinky. Neobsahuje viac procesných krokov, neobsahuje údaje o životnom cykle počas celého životného cyklu výrobného systému alebo údaje LCI a nezahŕňa záporné toky.

4.2. Určenie typu procesu

V nástroji GaBi môžeme určiť typ procesu výberom príslušného typu z rozbaľovacej ponuky.

Pretože proces ohýbania papierovej spinky je jednotkový proces, môžeme pokračovať výberom **''u-so''**.

I	🏠 New <u-so></u-so>	Part production] DB Process					
	Object Edit	View Help					
		& D 🗿 = = = = R 🗩		🗸 🔳 🕐			
	Name	Natior Paper Clip Bending		Source	 u-so - Unit process, single operat 		
	Parameter				u-so - Unit process, single operation		
	Parameter	Formula 🛆	Value	Minimum Maximur Standar (Commagg - LCI result		
	Parameter				p-agg - Partly terminated system aps - Avoided product system		
ľ	🖑 LCA 👖 VF 🐘 LCC: 0 EUR 💁 LCWE 🗋 Documentation						
	Completeness	No statement					